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Abstract: The Herglotz space wave functions in ℝ2 wher is consist of all the solutions to the Helmholtz equation of Fourier's 

transform in ℝ2 analysis of the scale of support in a circle with a density 𝐿2(𝑆1). This space has the construction of a Hilbert space 

while reproducing the kernel. In this article we study the Toeplitz operators with some nonnegative and limited radial symbols, 

which are compact  Toeplitz operator of compressed and his belonging to Schatten classes 𝑠1+ .  

IndexTerm:s Toepliz operator, Fourier's transform, Bergmann spaces, kernel, Herglotz wave function, Helmholtz, Hilbert space, 
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Introduction:  

Theory of the Toepliz operators in the Bergmann spaces of the homogeneous functions it have played many important role in the 

operators of the theory of complex analysis for many years. We can answer natural questions such as those that describe to us a 

characterization of symbols that show compact Toeplitz operators  or that are limited to different values, but the Toepliz operators 

in Bergmann spaces for Halomorphic functions and as in the spaces of harmonic functions and kernel creation. ( [1] and [2],[3],[4] 

). 

  We needed from this paper  to study those toeplitz operators by the spaces of all Herglotz wave functions in ℝ2,The Herglotz 

wave function in ℝ𝑛 which are solutions to the Helmutz equation. 

                 ∆𝑢 + 𝑢 = 0                                                                                                                                                                       (1) 

  From ℝ𝑛 it can be represented by Fourier transform in ℝ𝑛 and the measure ∅𝑑𝑦, where ∅ ∈ 𝐿2(𝑆𝑛−1) and 𝜆 is the Lebesgue 

measure in 𝑆𝑛−1. And from the Herglotz wave function write as 

                   𝑢(𝑥) = ∫ 𝑒𝑖𝑥.𝜔∅(𝜔)𝑑𝜆(𝜔)
𝑆𝑛−1                                                                                                                                        (2) 

It has been given a number of descriptions of the Herglotz wave functions, ([5],[6],[7]). Such as the necessary and sufficient 

conditions the Herglotz wave functions, which is 

                    lim
𝑅→∞

(
1

𝑅
∫ |𝑢(𝑥)|2𝑑𝑥

|𝑥|<𝑅
)

1

2
< ∞.                                                                                                                               (3) 

  Referring to 𝑊2 in relation to the Herglotz space functions in ℝ𝑛. 

Through the intrinsic relationship of the harmonic analysis, we find that the functions of Herglotz waves have a role in the acoustic 

dispersion of nonheterogeneous obstacles and media in that some of the Herglotz wavelength functions determine whether some 

patterns of the far field are dense in 𝐿2(𝑆𝑛−1). [8], which leads to dispersal of elastic waves [9], We can say that the whole function 

𝑢 is a solution to the equation of the Helmholtz in ℝ𝑛. The space 𝑊2 from equation (3) is the Hilbert space and the map in (2) is 

called the expansion operator, it gives the similarity isomorphism 𝐿2(𝑆𝑛−1)  onto 𝑊2.  

  Through the dimensions 𝑛 = 2 in [10] that is the extension operator ∅ → ∅𝑑�̂�, That is an isomorphism from 𝐿2(𝑆1) to space 

represents the complete solution to 𝑢 of the Helmholtz equation which is given by  

                    ‖𝑢‖2 = ∫ (|𝑢(𝑥)|2 + |𝜕𝜃𝑢(𝑥)|2)
ℝ2 𝑊(𝑥)𝑑𝑥,                                                                                                                (4)  

If 𝑊(𝑥) =
1

1+|𝑥|3 . 𝜕𝜃𝑢 = ∇.
𝑥⊥

|𝑥|
. 𝑥⊥ = (−𝑥2, 𝑥1) and 𝑑𝜃 is to be Lebesgue measure on 𝑆1 [11]. So from the set of solutions of the 

Helmholtz equation (3) is equivalent to (4) and thus provides us with a new characterization of the functions of the Herglotz  wave 

in ℝ2, and we find that the space of all entire functions as in 𝑢, is ‖𝑢‖ < ∞.  

From all this we confirm that the result is in [1], which means that 𝑊2 is in ℝ2. 

From the 𝑊2 elements such as the Newmann series can be expanded  

                    𝑢(𝑥) = ∑ 𝑎𝑛𝐽𝑛(𝑟)𝑒𝑖𝑛𝜃
𝑛∈ℤ                                                                                                                                               (5)  
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when 𝑥 = 𝑟𝑒𝑖𝜃 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) and ∑ |𝑎𝑛|2
𝑛∈ℤ < ∞, that where 𝐽𝑛(𝑟) is the Bessel function to order 𝑛 ∈ ℤ , [6]. 

 If we consider the 𝑊2 space associated with the Hilbert space of 𝐿2(𝑆1) as space taking into account the kernel output mentioned 

in [10,11]. 

   When 𝑤(𝑟) =
𝑟

1+𝑟3 for 𝑟 > 0, if 𝐻2 it contains space that consists of all distributions 𝑢 ∈ 𝐷,(ℝ2\{0}) such that 𝑢,
𝜕𝑢

𝜕𝜃
∈ 𝐿2(𝑤), 

then can write 𝐿
2(𝑤) for 𝐿

2(ℝ2\{0}, 𝑊𝑑𝑥) .   

   𝐻
2 That I mentioned in the base ‖. ‖ in (4) is a Hilbert space and 𝑊2 it is that element space 𝑢 ∈ 𝐻2 who extends  ℝ2 and extends 

Helmholtz equation. 
   If ∈ 𝑊2 , then  

            ‖𝑢‖
𝑊2
2 ~ ∑ |𝑎𝑛|2~‖∅‖

𝐿2(𝑆1)
2

𝑛∈ℤ , 

when  ∅ = ∑ 𝑎𝑛𝑒𝑖𝑛𝜃
𝑛∈ℤ  and 𝑢 = ∅𝑑�̂� . 

    Denote 𝐹𝑛(𝑟𝑒𝑖𝜃) = 𝐽𝑛(𝑟)𝑒𝑖𝑛𝜃, then {𝑒𝑛}𝑛∈ℤ with 𝑒𝑛 = 𝐹𝑛/‖𝐹𝑛‖𝑊2  It is the orthogonal basis to 𝑊2. Let 𝛽𝑛 = ‖𝐹𝑛‖𝑊2 , in [6]. 

                    𝛽𝑛
2 = ∫ (𝑛2 + 1)𝐽𝑛

2∞

0
(𝑟)𝑤(𝑟)𝑑𝑟~ ∫ (𝑛2 + 1)𝐽𝑛

2∞

1
(𝑟)

𝑑𝑟

𝑟2 ~1.                                                                                         (6) 

we can take   𝑃: 𝐻2 → 𝑊2  

is orthogonal projection. A reproducing kernel to 𝑊2 it is a closed subspace of 𝐻2 is, 𝐾(𝑥, 𝑦) = ∑ 𝑒𝑛𝑛∈ℤ (𝑥)𝑒𝑛(𝑦)̅̅ ̅̅ ̅̅ ̅ =

∑
𝐽𝑛(𝑟)𝐽𝑛(𝑆)𝑒𝑖𝑛(𝜃−𝜑)

𝛽𝑛
2𝑛∈ℤ , when 𝑥 = 𝑟𝑒𝑖𝜃 and 𝑦 = 𝑆𝑒𝑖𝜑. The kernel 𝐾(𝑥, 𝑦) is real and, 

        𝑃𝑢(𝑥) = 〈𝑢, 𝐾(𝑥, . )〉𝐻2 = ∫ (𝐾(𝑥, 𝑦)𝑢(𝑦) + 𝜕𝜑𝐾(𝑥, 𝑦)𝜕𝜑𝑢(𝑦))
ℝ2 𝑊(𝑦)𝑑𝑦. 

If that ‖𝐾(𝑥, . )‖
𝑊2
2 = ∑

𝐽𝑛
2(𝑟)

𝛽𝑛
2𝑛 ~1, hence , [11].  

                          ∑ 𝐽𝑛
2(𝑟)𝑛∈ℤ = 1                                                                                                                                                         (7) 

  From studying the Topolitz operators in 𝑊2 for nonnegative radial symbols, 𝜌𝑗, the Topolitz operators previously mentioned by 

𝑇𝜌𝑗
 and previously mentioned in the classic holorporphic numbers can be defined as  

                        𝑇𝜌𝑗
(𝑢) = 𝑃(𝜌𝑗𝑢). 

  We can study  the  continuity of  Toeplitz  operators  is function 𝜌𝑗 defined on [0, ∞) is a Carleson symbol if that, 𝑊2 → 𝑊𝜌𝑗
2  it 

be continuous if 𝑊𝜌𝑗
2  is to be defined by replacing the measure as 𝑊(𝑥)𝑑𝑥 when  𝜌𝑗(𝑥)𝑊(𝑥)𝑑𝑥, at definition of 𝑊2.  

We can prove the a nonnegative 𝜌𝑗 ∈ 𝐿1([0, ∞), 𝑤(𝑟)), the Toeplitrz operator 𝑇𝜌𝑗
 is bounded in 𝑊2 if 𝜌𝑗 is a Carleson symbol this 

is also the boundary of the sequence, 

                       {(1 + 𝑛2) ∫ 𝐽𝑛
2(𝑟)𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟

∞

0
}

𝑛∈ℤ
. 

  We find that in [12] of weights adapted to Helmholtz equations, we want to replace the Basel functions in the above 

characterization and they hide the geometric meaning of the Carlison symbols, the main result gives a sufficient condition in the 

integration of symbols that relate to a group of one-parameter with logical weights that do not involve special functions. 

Definition 1. We can Given a radial function 𝜌𝑗 = 𝜌𝑗(|𝑥| ≥ 0) and Ω = ℝ2\{0}, the Toeplitz operator can be defined with      

𝑇𝜌𝑗
𝑢(𝑥) = 𝑃(𝜌𝑗𝑢)(𝑥) = ∫ (𝐾(𝑥, 𝑦)𝑢(𝑦) + 𝜕𝜑𝐾(𝑥, 𝑦)𝜕𝜑𝑢(𝑦))

ℝ2 𝜌𝑗(|𝑦|)𝑊(𝑦)𝑑𝑦, 

that 𝑢 is the linear of span of  {𝑒𝑛}𝑛∈ℤ. 

 It can be seen that all symbol 𝜌𝑗 ∈ 𝐿∞(0, ∞), from the definition of abounded Toeplitz operator on 𝑊2, Also 𝑇𝜌𝑗
, is to be a multiplier 

acting on 𝑊2  

𝑇𝜌𝑗
(∑ 𝑎𝑛𝑒𝑛) = ∑ 𝛾𝑛𝑎𝑛𝑒𝑛 

where  

                            𝛾𝑛 = 𝛾−𝑛 =
2𝜋(𝑛2+1)

𝛽𝑛
2 𝛼𝑛                                                                                                                                         (8) 

and 

                            𝛼𝑛 = ∫ 𝐽𝜌𝑗
2 (𝑟)𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟

∞

0
.                                                                                                                                (9) 

This can be seen in a note for  𝑥 = 𝑟𝑒𝑖𝜃 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 

          𝑇𝜌𝑗
(

𝐹𝑚

𝛽𝑚
) (𝑥) = ∫ ∫ (∑

𝐽𝑛(𝑟)𝐽𝑛(𝑠)𝑒𝑖𝑛(𝜃−𝜑)

𝛽𝑛
2𝑛 )

2𝜋

0

∞

0

𝐽𝑚(𝑠)𝑒𝑖𝑚𝜑

𝛽𝑚
𝑑𝜑𝜌𝑗(𝑠)𝑤(𝑠)𝑑𝑠  

        + ∫ ∫ 𝜕𝜑 (∑
𝐽𝑛(𝑟)𝐽𝑛(𝑠)𝑒𝑖𝑛(𝜃−𝜑)

𝛽𝑛
2𝑛 ) 𝜕𝜑 (

𝐽𝑚(𝑠)𝑒𝑖𝑚𝜑

𝛽𝑚
)

2𝜋

0

∞

0
𝑑𝜑𝜌𝑗(𝑠)𝑤(𝑠)𝑑𝑠 
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        = (
2𝜋(1+𝑚2)

𝛽𝑚
2 ∫ 𝐽𝑚

2 (𝑠)𝜌𝑗(𝑠)𝑤(𝑠)𝑑𝑠
∞

0
)

𝐹𝑚

𝛽𝑚
(𝑥) = 𝛾𝑚

𝐹𝑚

𝛽𝑚
(𝑥).  

And that also follows 𝑇𝜌𝑗
, is limited if and only if {𝛾𝑛}𝑛 is limited  

It follows immediately that 𝑇𝜌𝑗
 is bounded if and only if {𝛾𝑛}𝑛 is bounded, that is, provided in 

                 ∫ 𝐽𝑛
2(𝑟)𝑇𝜌𝑗

(𝑟)𝑤(𝑟)𝑑𝑟
∞

0
≤

𝐶

𝑛2+1
.                                                                                                                                      (10) 

And in particular by (7), we can have that 𝜌𝑗 ∈ 𝐿1([0, ∞), 𝑤(𝑟)) if  𝑇𝜌𝑗
 is bounded. But the converse is not true from Remark 9.  

Definition 2. it call 𝜌𝑗 a Carleson symbol if it    

∫ (|𝑢(𝑥)|2 + |𝜕𝜑𝑢(𝑥)|
2

)
ℝ2

𝜌𝑗(𝑥)𝑊(𝑥)𝑑𝑥 ≤ 𝐶 ∫ (|𝑢(𝑥)|2 + |𝜕𝜑𝑢(𝑥)|
2

)
ℝ2

𝑊(𝑥)𝑑𝑥 

that any 𝑢 ∈ 𝑊2, that can be, if the identity, 𝑊2 → 𝑊𝜌𝑗
2  

is acontinuous, when 𝑊𝜌𝑗
2 , where defined by replacing the measure 𝑊(𝑥)𝑑𝑥 by 𝜌𝑗(𝑥)𝑊(𝑥)𝑑𝑥 by definition of 𝑊2. 

From operator notice 𝑇𝜌𝑗

1/2
 it can be a densely defined if, 𝑇𝜌𝑗

1/2
𝑢 = ∑  𝛾𝜌𝑗

1/2
𝑛 𝑎𝑛𝑒𝑛,  

If 𝑢 = ∑ 𝑎𝑛𝑒𝑛𝑛∈ℤ  is the linear of span of {𝑒𝑛}𝑛∈ℤ.  

     Such that 𝑢, 

            ‖𝑢‖
𝑊𝜌𝑗

2
2 = ∫ (|𝑢(𝑥)|2 + |𝜕𝜑𝑢(𝑥)|

2
)

ℝ2 𝜌𝑗(𝑥)𝑊(𝑥)𝑑𝑥 

          = ∫ ∫ |∑
𝑎𝑛𝐽𝑛(𝑠)𝑒𝑖𝑛𝜑

𝛽𝑚
𝑛 |

2

𝑑𝜑𝑤(𝑠)𝜌𝑗(𝑥)𝑑𝑠
2𝜋

0

∞

0
+ ∫ ∫ |∑

𝑎𝑛𝑖𝑛𝐽𝑛(𝑠)𝑒𝑖𝑛𝜑

𝛽𝑚
𝑛 |

2

𝑑𝜑𝑤(𝑠)𝜌𝑗(𝑥)𝑑𝑠
2𝜋

0

∞

0
    

     = 2𝜋 ∫ ∑ (𝑛2 + 1)𝑛
∞

0

|𝑎𝑛|2𝐽𝑛
2(𝑠)

𝛽𝑛
2 𝑤(𝑠)𝜌𝑗(𝑥)𝑑𝑠 = 2𝜋 ∑ 𝛾𝑛

|𝑎𝑛|2

𝛽𝑛
2𝑛 = 𝐶 ‖𝑇𝜌𝑗

1/2
𝑢‖

𝑊2
. 

 Proposition3. From the following equivalence statements: 

  1- 𝜌𝑗 this is a Carleson symbol,  

  2- 𝑇𝜌𝑗
 this is bounded.  

In order for us to complete, we must have an estimate for the Basel functions, as these estimates can be summarized in the following 

elements. 

Lemma4. Let 𝜇 ≥ 0 , 휀 ≥ 1 and 𝑎 > 1, If there is a constant 𝐶 and it depends on 1 + 휀 and 𝑎, like that 

  
1

𝐶
𝜇

1

3
−

1+𝜀

3 ∑ 2𝑗(1−
1+𝜀

4
)𝑀−1

𝑗=0 ≤ ∫ |𝐽𝜇(𝑟)|
1+

𝑑𝑟
𝑎𝜇

𝜇

𝑎

≤ 𝐶𝜇
1

3
−

1+𝜀

3 ∑ 2𝑗(1−
1+𝜀

4
)𝑀−1

𝑗=0 ,  

when  𝜇
2

3~2𝑀. 

Lemma5. If 𝜇 ≥ 1/2, if there exists a universal constant 𝐴 > 0, then:  

  1- for 𝑟 ≥ 𝜇 + 𝜇1/3, it have,  

                       𝐽𝜇(𝑟) =
1

√2𝜋

cosθ(𝜇,𝑟)

(𝑟2−𝜇2)
1
4

+ ℎ(𝜇, 𝑟),                                                                                                                                 (11) 

and 

                      𝜃(𝜇, 𝑟) = (𝑟2 − 𝜇2)
1

2 − 𝜇 𝑎𝑟 cos
𝜇

𝑟
−

𝜋

4
                                                                                                                     (12)  

also 

                      |ℎ(𝜇, 𝑟)| ≤ {
𝐴 (

𝜇2

(𝑟2−𝜇2)
7
4

+
1

𝑟
)   if 𝜇 + 𝜇1/3 ≤ 𝑟 ≤ 2𝜇

𝐴

𝑟
                              if    𝑟 ≥ 2𝜇.

                                                                                              (13)  

2-   𝜇1/3|𝐽𝜇(𝑟)|~𝐴 if 𝜇 − 𝜇1/3 < 𝑟 < 𝜇 + 𝜇1/3 .                             

3- if We choose a constant 𝛼0. independent of , 0 < 𝛼0 < 1/2, represent this 𝑡0 we can defined it by equation 𝜇 when  

 𝛼0 = 𝜇 − 𝑡0𝜇1/3, such as 
𝛼0

2

2
𝜇2/3 ≤ 𝑡0 ≤ 𝛼0

2𝜇2/3 

where 

(a) for 𝜇 sech 𝛼 = 𝜇 − 𝑡𝜇1/3 and 1 ≤ 𝑡 ≤ 𝑡0, we have  

     |𝐽𝜇(𝜇 sec ℎ𝛼)| ≤ 𝐴
𝑒−𝜇(𝛼−tanh 𝛼)

𝜇1/3𝑡1/4 , 

  (b) for 1 ≤ 𝜇 such 𝛼 ≤ 𝜇    such 𝛼0 we have  

                 |𝐽𝜇(𝜇 sec ℎ𝛼)| ≤ 𝐴
𝑒−𝜇(𝛼−tanh 𝛼)

𝜇1/2 . 

4-  For 𝑟 ≥ 2𝜇  

           𝐽𝜇(𝑟) = √ 2

𝜋𝑟

(cos (𝑟 −
𝜋𝜇

2
−

𝜋

4

) + 0 (1

𝑟

))           

that is auniformly in 𝜇. 

Proof: In part 1 of Lemma (5) we get it from using fixed methods in [13,14] and part 2 and 4 its proved in [15] and part 3 in [16].  

Lemma6. If 1 ≤ 𝑟 ≤ 𝜇 − 𝜇1/3, then : ∅(𝑟) = 𝛼(𝑟) − tanh 𝛼(𝑟), when 𝛼(𝑟) given by the equation 𝜇𝑠𝑒𝑐ℎ𝛼(𝑟) = 𝑟. Such as 

  1- ∅ is to be a decreasing function with ∅,(𝑟) = −
(𝜇2−𝑟2)

1/2

𝜇𝑟  

  2- ∅(𝜇 sech 𝛼0) ≔ 𝛽0 > 0,   

  3- ∅(1) ≤ log(2𝜇) −
√𝜇2−1

𝜇
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Theorem7. Let 𝜌𝑗 is nonnegative function 𝐿1([0, ∞), 𝑤(𝑟)𝑑𝑟) so for each 𝜇0 > 0,  

                       sup
𝜇>𝜇0

∫
𝜇2

𝜇2/3+𝑟1/2(𝑟−𝜇)1/2 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 < ∞
∞

𝜇
.                                                                                                     (14) 

Which means 𝜌𝑗 it is called a Carleson symbol in (14) takes replacing 𝜇0 if its takes a positive number.  

The above condition is almost necessary, as was mentioned in Remark12 and Proposition13. Where the proposals is proved in 

Carlson symbols 𝜌𝑗 from the integrals mentioned in (8) for the sake of 𝜇 have been proven and it reflects the weakness of theorem7 

and this is an open question that can change the record in proposition13.  

In order to prove that theorems we can use sharp asymptotics of the Bessel functions 𝐽𝜇, With the control on the dependence in the 

parameter 𝜇, contained in Lemmas (5,6,7).  

We can study the compactness of the Toeplitz  operators. A compactness of  𝑇𝜌𝑗
 that is that is equivalent to corresponding pressures 

that include 𝑊2 → 𝑊𝜌𝑗
2  for the determining that change of the type of Prizin specialized to study of factors belonging to the Schatten 

of that types of classes 𝑠1+ . That can be using a Berezin transform, we can characterize all the Hilbert-Schmidt and Trace Class 

Teeplitz operators. 

From this paper 𝜌𝑗 will can fined a nannegative radial function. It can write A~B for two nonnegative quantities 𝐴, 𝐵, that is positive 

constants 𝐶1, 𝐶2 when as 𝐶1, 𝐴 ≤ 𝐵 ≤ 𝐶2𝐴 . Such as 𝐶 it denote a positive constsnt  for any change in each occurrence. 

 Proof: From conditions in equation (14) is a independent of 𝜇0 can provided 𝜌𝑗 ∈ 𝐿1([0, ∞), 𝑤(𝑟)𝑑𝑟). Let 𝜌𝑗 ∈

𝐿1([0, ∞), 𝑤(𝑟)𝑑𝑟) satisfying in equation(14). Define by   

     𝐻(𝑟, 𝜇) =
𝜇2

𝜇2/3+𝑟1/2|𝑟−𝜇|1/2.  

We can have  𝐻(𝑟, 𝜇)~𝐻(𝑟, 𝜇), when  

            𝐻(𝑟, 𝜇) = {
𝜇4/3                       𝑟 ∈ [𝜇 − 𝜇1/3, 𝜇 + 𝜇1/3]

𝜇2

𝜇1/2(𝑟−𝜇)1/2                       𝑟 > 𝜇 + 𝜇1/3
  

and uniformly for  𝑟 ≥ 𝜇 − 𝜇1/3 and 𝜇 > 𝜇0. 

   Notce it from equation (14) it follows that there exists  𝜇1 > 0 such as 

             sup
𝜇>𝜇1

∫ 𝐻(𝑟, 𝜇)
∞

𝜇−𝜇1/3 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 < ∞. 

In the fact if we put 𝜇1 largere enough then 𝜇 − 𝜇1/3 ≤ 𝑟 ≤ 𝜇 when  𝜇 ≥ 𝜇1, we have 𝜇 − 𝜇1/3~𝑟~𝜇 . Then so  

            𝐻(𝑟, 𝜇) = 𝜇4/3 ≤ 𝐶𝐻(𝑟, 𝜇 − 𝜇1/3)   

and  

         sup
𝜇>𝜇1

∫ 𝐻(𝑟, 𝜇)
∞

𝜇−𝜇1/3 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 ≤ 

        𝐶 sup
𝜇>𝜇1

∫ 𝐻(𝑟, 𝜇 − 𝜇1/3)
∞

𝜇−𝜇1/3 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 < ∞

.

 This is together with (14) implies that  

         sup
𝜇≥0

𝜇2 ∫
𝜌𝑗(𝑟)

𝑟1/2(𝑟−𝜇)1/2

∞

𝜇+𝜇1/3 𝑤(𝑟)𝑑𝑟 < ∞                                                     

and 

                    sup
𝜇≥0

𝜇4/3 ∫ 𝜌𝑗(𝑟)
𝜇+𝜇1/3

𝜇−𝜇1/3 𝑤(𝑟)𝑑𝑟 < ∞.                                                                                                                     (15) 

      Now we can prove the sequence {𝛾𝑛}𝑛 when corresponding to 𝜌𝑗 is bounding. the end of this we decompose for 𝑛 ≥ 1  

∫ 𝐽𝑛
2∞

0
(𝑟)𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 = ∫ +

𝑛 sech 𝛼0

0
∫ +

𝑛−𝑛1/3

𝑛 sech 𝛼0
∫ +

𝑛+𝑛1/3

𝑛−𝑛1/3 ∫ +
2𝑛

𝑛+𝑛1/3 ∫ =
∞

2𝑛
∑ 𝐽𝑖

5
𝑖=1   

any integration can be estimated according from Lemma6  

That can be |𝐽𝜇(𝑟)| ≤ 𝐶/𝑛, wher 𝑟 ∈ [0, 𝑛 sech 𝛼0), like 

𝒥1 ≤
𝐶

𝑛2

∫ 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟
∞

0 ≤
𝐶

𝑛2
. 

Into 𝒥3, that can be |𝐽𝑛(𝑟)|~𝑛−1/3
  in [𝑛 − 𝑛1/3

], there  

         𝒥3 ≤ 𝐶

𝑛2/3

∫ 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟
𝑛+𝑛1/3

𝑛−𝑛1/3 ≤
𝐶

𝑛2
 . 

To consider 𝒥4, we can know that |𝐽𝑛(𝑟)| ≤
𝐶

𝑟1/4(𝑟−𝑛)1/4  if 𝑟 ∈ [𝑛 + 𝑛1/3, 2𝑛], this means that 𝒥4 ≤
𝐶

𝑛2
. 

For 𝒥5, that can be |𝐽𝜇(𝑟)| ≤ 𝐶𝑟−1/2
, then 

   ∫ 𝐽𝑛
2∞

2𝑛
(𝑟)𝜌𝑗(𝑟)

𝑑𝑟

𝑟2 ≤ 𝐶 ∫
𝑟1/2(𝑟−𝑛)1/2

𝑟𝑟1/2(𝑟−𝑛)1/2

∞

2𝑛
𝜌𝑗(𝑟)

𝑑𝑟

𝑟2 ≤ 𝐶 ∫
𝜌𝑗(𝑟)

𝑟1/2(𝑟−𝑛)1/2

∞

2𝑛

𝑑𝑟

𝑟2 ≤
𝐶

𝑛2
. 

  In the end we estimate 𝒥2, we split it [𝑛 sech 𝛼0, 𝑛 − 𝑛1/3] ⊂ ⋃ 𝐼𝑗
𝑀
0

 with 

   𝐼𝑗 = {𝑟 = 𝑛 − 𝑠𝑛1/3: 2𝑗 < 𝑠 ≤ 2𝑗+1} and  𝑀 = [𝑙𝑜𝑔2(1 − sech 𝛼0)𝑛2/3]  for each  𝐼𝑗  

|𝐽𝑛(𝑟)| ≤
𝑒−𝑛(𝛼(𝑟)−tanh(𝑟))

2𝑗/4𝑛1/3 , 

When 𝑟 = 𝑛 sech 𝛼  
then: 

       𝒥2 = ∑ ∫ 𝐽𝑛
2(𝑟)𝜌𝑗(𝑟)

𝑑𝑟

𝑟2
𝐼𝑗

≤𝑗 ∑ 𝐶

2𝑗/2𝑛2/3 ∫ 𝑒−2𝑛(𝛼(𝑟)−tanh(𝑟))𝜌𝑗(𝑟)
𝑑𝑟

𝑟2
𝐼𝑗

𝑗  ≤ ∑ 𝐶

2𝑗/2𝑛2/3 sup
𝐼𝑗

𝑒−2𝑛(𝛼(𝑟)−tanh𝛼(𝑟))
∫ 𝜌𝑗(𝑟)

𝑑𝑟

𝑟2
𝐼𝑗

𝑗
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The idea is simply  

                   𝜓(𝜇) = 𝜇 − 𝜇1/3
 and  𝜑(𝜇) = 𝜇 + 𝜇1/3

                                                                                                                      (16) 

The function 𝜑
−1

 is exists in [0, ∞[. Put 𝜇𝑗 such as 𝜑(𝜇𝑗) = 𝑛 − 2𝑗+1𝑛1/3
. We can have (𝜇𝑗)~𝜇𝑗~𝑛 .  

           ∫ 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 =
𝐼𝑗

∫
𝑟1/2(𝑟−𝜇𝑗)

1/2

𝑟1/2(𝑟−𝜇𝑗)
1/2𝐼𝑗

𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟     

           ≤ ∫
𝑟1/2(𝑟−𝜑(𝜇𝑗))

1/2

𝑟1/2(𝑟−𝜇𝑗)
1/2𝐼𝑗

𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 + ∫
𝑟1/2(𝜑(𝜇𝑗)−𝜇𝑗)

1/2

𝑟1/2(𝑟−𝜇𝑗)
1/2𝐼𝑗

𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 = 𝐿1 + 𝐿2,   

            𝐿1 ≤ 𝐶2𝑗/2𝑛2/3 ∫
𝜌𝑗(𝑟)

𝑟1/2(𝑟−𝜇𝑗)
1/2 𝑤(𝑟)𝑑𝑟 ≤ 𝐶2𝑗/2𝑛2/3−2

𝜑(𝜇𝑗) , 

however (𝜑(𝜇𝑗) − 𝜇𝑗)
1/2

~𝑛1/6
  this means 

               𝐿2 ≤ 𝐶𝑛2/3−2
 

in the last from Lemma7 the  sup
𝐼𝑗

𝑒−2𝑛(𝛼(𝑟)−tanh𝛼(𝑟)) ≤ 𝑒𝑥𝑝(−22𝑗/3) then 

                𝒥2 ≤
𝐶

𝑛2
∑ sup

𝐼𝑗

𝑒−2𝑛(𝛼(𝑟)−tanh𝛼(𝑟)) ≤
𝐶

𝑛2𝐼𝑗
  

Example8. Each function 𝜌𝑗 ∈ 𝐿1([0, ∞), 𝑤(𝑟)𝑑𝑟) like  𝜌𝑗(𝑟) ≡ is constant if 𝑟 > 𝑟0 is the a Carleson symbol as 𝜇 > 𝑟0, 

                ∫ 𝐻(𝑟, 𝜇)
∞

𝜇
𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 ≤ 𝐶 ∫ 𝐻(𝑟, 𝜇)

∞

𝜇

𝑑𝑟

𝑟2 ≤ 𝐶 (𝜇−1/3 +
1

𝜇
∫

𝑑𝑟

(𝑟−𝜇)1/2

∞

𝜇+𝜇1/3 ) ≤ 𝐶, 

when 𝐻 is defined in the proof of Theorem7. Speciallyat,    

               𝜌𝑗(𝑟) =
1

(𝑟−𝑎)𝛼 𝜒(𝑎,∞)(𝑟) , 𝑎 > 0 , 0 ≤ 𝛼 < 1 

is a Carleson symbol which boundless.  

    In effect, 

               𝜌𝑗(𝑟) ≤
1

(𝑟−𝑎)𝛼 𝜒(𝛼,𝑎+1)(𝑟) + 𝜒(𝑎+1,∞)(𝑟). 

Remark9.  

   1- Put 𝜌𝑗 ≥ 0 so that the sequence 𝜆𝑛 is defined as  

               𝜆𝑛 = inf {𝜌𝑗(𝑟): 𝑟 ∈ [
𝑛

𝛾
, 𝛾𝑛]},   

such as 𝛾 > 1 is boundless. Then 𝜌𝑗 is not define it a Carleson symbol. When as    

𝑛2 ∫ 𝐽𝑛
2(𝑟)𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟

∞

0
≥ 𝑛2 ∫ 𝐽𝑛

2(𝑟)𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟
𝛾𝑛

𝑛/𝛾
~𝜆𝑛 ∫ 𝐽𝑛

2(𝑟)𝑑𝑟
𝛾𝑛

𝑛/𝛾
~𝜆𝑛  

hence the Lemma5 ∫ 𝐽𝑛
2(𝑟)𝑑𝑟

𝛾𝑛

𝑛/𝛾
 such that a constant 

 And in the particular, a Carleson measure 𝜌𝑗 is not satisfy a condition such as  

lim
𝑟→∞

𝜌𝑗(𝑟)

log𝑟
≥ 0.  

   2- we noticed that if 𝜌𝑗 like   

{∫
𝜌𝑗(𝑟)

𝑟

2𝑛

𝑛
𝑑𝑟}

𝑛∈ℕ
   

which boundless sequence, such 𝜌𝑗 that is not a Carleson symbol. Indeed that by Leama6, if  𝑟 > 2(𝑛 + 1)  then  

𝐽𝑛
2(𝑟) + 𝐽𝑛+1

2 (𝑟)~
2

𝜋𝑟
(cos2 (𝑟 −

𝜋𝑛

2
−

𝜋

4
) + cos2 (𝑟 −

𝜋(𝑛 + 1)

2
−

𝜋

4
) + 0 (

1

𝑟
)) =

2

𝜋𝑟
(1 + 0 (

1

𝑟
)) 

Hance  

                 𝑛2 ∫ (𝐽
[
𝑛

2
]

2 (𝑟) + 𝐽
[
𝑛

2
]+1

2 (𝑟)) 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟
∞

0
≥ 𝑛2 ∫ (𝐽

[
𝑛

2
]

2 (𝑟) + 𝐽
[
𝑛

2
]+1

2 (𝑟)) 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟
2𝑛

𝑛
~ ∫

𝜌𝑗(𝑟)

𝑟

2𝑛

𝑛
𝑑𝑟  

3- The definition of the Toeplitz operators can be extended by using radial symbols in the location function 𝜌𝑗 of the positive 

Basel standard 𝑣 in [0, ∞) that allows as 

𝑇𝑣𝑢(𝑥) = ∫ (𝐾(𝑥, 𝑦)𝑢(𝑦) + 𝜕𝜑𝐾(𝑥, 𝑦)𝜕𝜑𝑢(𝑦)) 𝑤(𝑠)𝑑𝑣(𝑠)𝑑𝜑
ℝ2

 

Then immediately, if 𝑣 = 𝛿𝑎 we have this 𝑇𝑣 is the diagonal operator diag(𝛾𝑛) which is basical related {𝑒𝑛} with  𝑊2 and 𝛾𝑛 =
2𝜋(1+𝑛2)

𝛽𝑛
2 𝐽𝑛

2(𝑎)𝑤(𝑎). Then ‖𝑇𝛿𝑎 ‖ uniformly limited 𝑎 ≥ 𝑎0 > 0 in equation (30). 

Example10. By studying these examples and believing that the Carlson symbols are not too big for the values in 𝑟. The 

following example shows the opposite. Thus, it is difficult to know that 𝜌𝑗 defines the Carlson symbols by  

       𝜌𝑗(𝑟) = ∑
2𝑗/2

(𝑟−2𝑗)
1
2

∞
𝑗=1 𝜒𝑀𝑗(𝑟),  

when  𝑀𝑗 = (2𝑗 + 2
𝑗

3, 2𝑗 + 21+
𝑗

3). 

We review the following suggestions on the importance of the condition (8).  

Proposition11. Let 𝜌𝑗 be a Carlesson symbol, where (15) holds  

                  𝜇2 ∫
𝜌𝑗(𝑟)

𝑟1/2(𝑟−𝜇)1/2

∞

2𝜇
𝑤(𝑟)𝑑𝑟 ≤ 𝐶𝜇0

,                                                                                                                                  (17) 

  where  𝜇 > 𝜇0.  
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Proof: Put 𝜌𝑗 to be a Carleson symbol. hence  mentioned, for 𝑟 > 2(𝑛 + 1) we have 

              𝐽𝑛
2(𝑟) + 𝐽𝑛+1

2 (𝑟)~
2

𝜋𝑟
(1 + 0 (

1

𝑟2)) 

Then  

              ∫
𝜌𝑗(𝑟)

𝑟3

∞

2(𝑛+1)
𝑑𝑟 ≤ 𝐶 ∫

𝐽𝑛
2(𝑟)+𝐽𝑛+1

2 (𝑟)

𝑟2 𝜌𝑗(𝑟)
∞

2(𝑛+1)
𝑑𝑟 ≤ 𝐶(𝛼𝑛 + 𝛼𝑛+1) ≤

𝐶

𝑛2.       

This is proves that 

               ∫
𝜌𝑗(𝑟)

𝑟3

∞

2𝜇
𝑑𝑟 ≤

𝐶

𝜇2. 

So   

               𝜇2 ∫
𝜌𝑗(𝑟)

𝑟1/2(𝑟−𝜇)1/2

∞

2𝜇
𝑤(𝑟)𝑑𝑟 ≤ 𝜇2 ∫

𝜌𝑗(𝑟)

𝑟3

∞

2𝜇
𝑑𝑟 ≤ 𝐶  

and (17) holds. 

If 𝑛 ∈ ℕ, then by Lemma 6 can find    

              ∫ 𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟
𝑛+𝑛1/3

𝑛−𝑛1/3 ~𝑛2/3 ∫ 𝐽𝑛
2(𝑟)𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟

𝑛+𝑛1/3

𝑛−𝑛1/3 ≤
𝐶

𝑛4/3 

if 𝑟 big, proving equation (15) at that case. Let  𝜇 = 𝑛 + 𝛼  where 𝑛 ∈ ℕ and 0 < 𝛼 < 1. Put 𝜑(𝜇) and 𝜓(𝜇) in equation (16). Then 

equation (15) which comes from the previous state from that time  

               [𝜓(𝜇), 𝜑(𝜇)] ⊂ [𝜓(𝑛), 𝜑(𝑛)] ∪ [𝜓(𝑛 + 1), 𝜑(𝑛 + 1)].                                                                                                  (18) 

Remark12. To note from the Proposition11 and assuming that 𝜌𝑗 satisfies that  

                sup
𝜇≥𝜇0

1

𝜇1/2 ∫
𝜌𝑗(𝑟)

(𝑟−𝜇)1/2

2𝜇

𝜇+𝜇1/3 𝑑𝑟 ≤ 𝐶,                                                                                                                               (19) 

so 𝜌𝑗 is a Carleson symbol if and only if (8) its holds.   

So, quite simply, we find the radial functions 𝜌𝑗 such that   

               sup
Ω

1

𝑏
∫ 𝜌𝑗(𝑟)𝑑𝑟

𝑎+𝑏

𝑎
< 𝐶                                                                                                                                                    (20) 

then  

                Ω = {𝜇, 𝑎, 𝑏: 𝜇 ≥ 𝜇0 , 𝜇 + 𝜇1/3 ≤ 𝑎 ≤ 2𝜇 , 𝜇1/3 ≤ 𝑏 ≤ 𝜇} 

with 𝜇0 > 0 and 𝐶 is absolute constant makes in (19). 

   And especially if it is a fixed 𝑏 > 0   

                  sup
𝑎>1

1

𝑏
∫ 𝜌𝑗(𝑟)𝑑𝑟

𝑎+𝑏

𝑎
< ∞,                                                                                                                                               (21) 

then 𝜌𝑗 satisfies in (20). 

Here we can study the question of how far condition (19) then to be (8) it to being nessary for 𝜌𝑗 its a Carleson symbol. We can 

prove the following result that  

                  
1

𝜇1/2 ∫
𝜌𝑗(𝑟)

(𝑟−𝜇)1/2

2𝜇

𝜇+𝜇1/3 𝑑𝑟 

that its an order log 𝜇 if 𝜌𝑗 is a Carleson symsboll. 

 Lemma13. Let 𝜇, and 𝑀 ∈ ℕ and this 2𝑀−1 ≤ 2𝜇 ≤ 2𝑀,  

                (𝜇 + 2𝜇1/3, 2𝜇) ⊂ ⋃ [𝜇 + 2𝑗𝜇1/3, 𝜇 + 2𝑗+1𝜇1/3]𝑀−1
𝑗=1 . 

Such that 𝑟 ∈ (𝜇 + 2𝑗𝜇1/3, 𝜇 + 2𝑗+1𝜇1/3) and 𝑗 ∈ {1,2, … , 𝑀 − 1} it can have  

                 
2

√6
≤ |𝜃(𝜇, 𝑟) − 𝜃 (𝜇 +

𝜇1/3

2𝑗/2 , 𝑟)| ≤ 2√2                                                                                                                         (22)  

Therefore  

                  cos 2√2  ≤ cos |𝜃(𝜇, 𝑟) − 𝜃 (𝜇 +
𝜇1/3

2𝑗/2 , 𝑟)| ≤ cos  
2

√6
 .                                                                                                (23)  

Proof : We put 𝑓(𝑡) = 𝜃(𝑡, 𝑟) = (𝑟2 − 𝑡)
1

2 − 𝑡 cos−1 𝑡

𝑟
−

𝜋

4
 , 𝑟 > 𝑡  

such that 𝑓 ,(𝑡) = − cos−1 𝑡

𝑟
. 

If that 𝑟 ∈ (𝜇 + 2𝑗𝜇1/3, 𝜇 + 2𝑗+1𝜇1/3)  and some of  𝑡 ∈ (𝜇, 𝜇 +
𝜇1/3

2𝑗/2 ) then 

𝜇1/3

2𝑗/2
cos−1

𝜇 +
𝜇1/3

2𝑗/2

𝜇 + 2𝑗𝜇
≤ |𝜃(𝜇, 𝑟) − 𝜃 (𝜇 +

𝜇1/3

2𝑗/2
, 𝑟)| =

𝜇1/3

2𝑗/2
cos−1

𝑡

𝑟
≤

𝜇1/3

2𝑗/2
cos−1

𝜇

𝜇 + 2𝑗+1𝜇
 

Then cos−1 𝑥 = ∫
1

√1−𝑡2

1

𝑥
𝑑𝑡  

then we have 

𝜇1/3

2𝑗/2
cos−1

𝜇

𝜇 + 2𝑗+1𝜇
≤

𝜇1/3

2𝑗/2
∫ (1 − 𝑡2)−1/2

1

𝜇

𝜇+2𝑗+1𝜇

𝑑𝑡 ≤ 2
𝜇1/3

2𝑗/2
(1 −

𝜇

𝜇 + 2𝑗+1𝜇
)

1/2

≤ 2√2 

In a similar way 
𝜇1/3

2𝑗/2 cos−1
𝜇+

𝜇

2𝑗/2

𝜇+2𝑗/2𝜇
≥

2

√6
  

 Proposition14. Assume that 𝜌𝑗 its a Carleson symbol, so there is 𝜇0 then  

                               sup
𝜇≥𝜇0

1

𝜇1/2𝑙𝑜𝑔𝜇
∫

𝜌𝑗(𝑟)

(𝑟−𝜇)1/2

2𝜇

𝜇+𝜇1/3 𝑑𝑟 ≤ 𝐶,                                                                                                          (24)  

there is 𝐶 is the a universal constant.  

When we need to prove the propostion14, requires a sharp study of the function 𝜃(𝜇, 𝑟) in lemma13, when a control to the zeros of 

Bessel functions in the transition interval [𝜇 + 𝜇1/3, 2𝜇]. More clearly, we can use the fact of that    
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                                     |𝐽𝜇(𝑟)|
2

+ |𝐽
𝜇+

𝜇1/3

2𝑗/2

(𝑟)|

2

≥
𝐶

(𝑟2 − 𝜇2)
1
2

 , 

When  𝑟 ∈ (𝜇 + 2𝑗𝜇1/3, 𝜇 + 2𝑗+1𝜇1/3) , 𝑗 ∈ {1,2, … , 𝑀 − 1}, and  2𝑀~𝜇2/3. 

Proof: Let 𝜇0 >
1

2
  and 𝑗𝐴 ∈ ℕ satisfy that  

  a)    𝑚𝑎𝑥 [
16𝐴2log𝜇0

𝜇0
,

8𝐴2

𝜇0
] ≤

1

8

1−cos
2

√6

4𝜋
  

  b)    
8𝐴2

23𝑗𝐴
<

1

8

1−cos
2

√6

4𝜋
  

  c)    𝑗𝐴 <
log𝜇0

100
 

when A is a constant in (14).  

  That it is enough to prove that  

                                sup
𝜇≥𝜇0

∫
𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2

𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 𝑑𝑟 ≤ 𝐶log𝜇,                                                                                                      (25) 

  In the correct number 𝑀 from lemma14.  

Whether 𝜌𝑗 is a Carleson symbol it is a complete   

                ∫ |𝐽𝜇(𝑟)|
2𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 𝜌𝑗(𝑟)𝑑𝑟 + ∑ ∫ |𝐽
𝜇+

𝜇1/3

2𝑗/2

(𝑟)|

2

𝜌𝑗
𝜇+2𝑗+1𝜇1/3

𝜇+2𝑗𝜇1/3
𝑀−1
𝑗=𝑗𝐴 (𝑟)𝑑𝑟 ≤ 𝐶. 𝑀~𝐶log𝜇                                               (26) 

In other words it can by using   

|𝑎 + 𝑏|2 ≥
1

2
|𝑎|2 − |𝑏|2  

We can fine    

                  ∫ |𝐽𝜇(𝑟)|
2𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 𝜌𝑗(𝑟)𝑑𝑟 + ∑ ∫ |𝐽
𝜇+

𝜇1/3

2𝑗/2

(𝑟)|

2
𝜇+2𝑗+1𝜇1/3

𝜇+2𝑗𝜇1/3
𝑀−1
𝑗=𝑗𝐴 𝜌𝑗(𝑟)𝑑𝑟  

                   ≥
1

4𝜋
∑ ∫ (cos2 𝜃(𝜇, 𝑟) + cos2𝜃 (𝜇 +

𝜇1/3

2𝑗/2 , 𝑟))
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝜇1/3
𝑀−1
𝑗=𝑗𝐴

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟 

                   − ∫ |ℎ(𝜇, 𝑟)|2𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 𝜌𝑗(𝑟)𝑑𝑟 − ∑ ∫ |ℎ (𝜇 +
𝜇1/3

2𝑗/2 , 𝑟)|
2

𝜇+2𝑗+1𝜇1/3

𝜇+2𝑗𝜇1/3
𝑀−1
𝑗=𝑗𝐴 𝜌𝑗(𝑟)𝑑𝑟.    

From the Lemma6 we can assume that in paragraph (b) above, then  

         ∫ |ℎ(𝜇, 𝑟)|2𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 𝜌𝑗(𝑟)𝑑𝑟 ≤ 2𝐴2𝜇4 ∫
1

(𝑟2−𝜇2)3

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 +
2𝐴2

𝜇2 ∫ 𝜌𝑗(𝑟)𝑑𝑟
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3   

          

         ≤ 2𝐴2𝜇4 ∑ ∫
1

(𝑟+𝜇)3(𝑟−𝜇)3

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑗+1𝜇1/3

𝜇+2𝑗𝜇1/3
𝑀−1
𝑗=𝑗𝐴

+
2𝐴2

𝜇2 ∫ 𝜌𝑗(𝑟)𝑑𝑟
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3  

         ≤ 2𝐴2 ∑
1

23𝑗 ∫
𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑗+1𝜇1/3

𝜇+2𝑗𝜇1/3
𝑀−1
𝑗=𝑗𝐴

+
8𝐴2

𝜇
∫

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑀𝜇

1
3

𝜇+2𝑗𝐴𝜇
1
3

           ≤
8𝐴2

23𝑗𝐴
∫

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 +
8𝐴2

𝜇
∫

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 ≤
1

4

1−cos  
2

√6
 

4𝜋
∫

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 .                                     (27)  

In the same way it can be prove  

           ∑ ∫ |ℎ (𝜇 +
𝜇

1
3

2
𝑗
2

, 𝑟)|

2
𝜇+2𝑗+1𝜇1/3

𝜇+2𝑗𝜇
1
3

𝑀−1
𝑗=𝑗𝐴 𝜌𝑗(𝑟)𝑑𝑟 ≤

1

4

1−cos  
2

√6
 

4𝜋
∫

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑀𝜇

1
3

𝜇+2𝑗𝐴𝜇
1
3

  

                                                               (28) 

From the Lemma14  

cos2 𝜃(𝜇, 𝑟) + cos2𝜃 (𝜇 +
𝜇1/3

2𝑗/2 , 𝑟) = 1 + cos (|𝜃(𝜇, 𝑟) − 𝜃 (𝜇 +
𝜇1/3

2𝑗/2 , 𝑟)|) . cos (|𝜃(𝜇, 𝑟) + 𝜃 (𝜇 +
𝜇1/3

2𝑗/2 , 𝑟)|) ≥ 1 − cos  
2

√6
 .  

Then  

        
1

4𝜋
∑ ∫ (cos2 𝜃(𝜇, 𝑟) + cos2𝜃 (𝜇 +

𝜇1/3

2𝑗/2 , 𝑟))
𝜇+2𝑗+1𝜇1/3

𝜇+2𝑗𝜇1/3

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2
𝑀−1
𝑗=𝑗𝐴 𝑑𝑟 ≥

1−cos  
2

√6
 

4𝜋
∫

𝜌𝑗(𝑟)

(𝑟2−𝜇2)1/2 𝑑𝑟
𝜇+2𝑀𝜇1/3

𝜇+2𝑗𝐴𝜇1/3 . 

From that and equations (26), (27) follows it (25).  

then by Proposition 11 and Proposition 13 we can obtain  

Remark15. Let 𝜌𝑗 be a Carlesson symbol, hence  

sup
𝜇≥𝜇0

{ ∫
𝜇2

𝜇2/3 + 𝑟1/2(𝑟 − 𝜇)1/3

(𝜇−∞)−(𝜇+𝜇1/3,2𝜇)

𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟 +
1

log𝜇
∫

𝜇2

𝜇2/3 + 𝑟1/2(𝑟 − 𝜇)1/2

(𝜇+𝜇1/3,2𝜇)

𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟} < ∞. 

 We remmber that any  Toeplitz operator 𝑇𝜌𝑗
 its a diagonal operator {𝛾𝑛}𝑛∈ℤ with 𝛾𝑛 where in (9) when respect to the basis {𝑒𝑛} is 

defined that.  Then  𝑇𝜌𝑗
 is a compact if and only if  lim

𝑛
𝛾𝑛 = 0. For the estimate in [15].  

                    |𝐽𝜇(𝑟)| ≤
𝑟𝑛

𝑛!2𝑛 𝑒
𝑟2

4  ,    

We can see that any function  𝜌𝑗 ∈ 𝐿1([0, ∞), 𝑤(𝑟)𝑑𝑟) with the bounded support defines a compact Toeplitz operator. and with 

there are a compact Toeplitz operators where is symbols have not bounded support where is in Proposition 21. 

Proposition16. When 𝑇𝜌𝑗
∈ 𝐿1([0, ∞), 𝑤(𝑟)𝑑𝑟). Where 𝑇𝜌𝑗

 is a compact in 𝑊2 implying 𝑊2 → 𝑊𝜌
2 is compact.  

Proof : From the sufficiency, we can discuss by contradiction. Let as 𝑊2 → 𝑊𝑇𝜌𝑗

2   is compact. When 𝑇𝜌𝑗
 is not compact there are 

a subsequence {𝛾𝑛𝑘
}

𝑘∈ℤ
 such as {𝛾𝑛𝑘

}
𝑘∈ℤ

≥ 휀 for any 휀 > 0. Wich a corresponding sequence {𝑒𝑛𝑘
}

𝑘∈ℤ
 it will have approximate 
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equivalence in 𝑊𝑇𝜌𝑗

2 . This is impossible since {𝑒𝑛𝑘
}

𝑘∈ℤ
is orthogonal in 𝑊𝜌𝑗

2  and  ‖𝑒𝑛𝑘
‖

𝑊𝜌𝑗
2 = 𝛾𝑛 ≥ 휀. Hence {𝛾𝑛}𝑛∈ℤ is converges 

to 0.  

We assume that 𝛾𝑛 → 0. Put {𝑢𝑛}𝑛∈ℤ is can a bouunded sequence in 𝑊2. We can see that easily  

                     𝑢𝑛 = ∑ 𝑎𝑛,𝑘𝑒𝑘𝑘∈ℤ  

from the convergence in 𝑊2. Then sup
𝑛∈ℤ

∑ |𝑎𝑛,𝑘|
2

𝑘∈ℤ < ∞, from this there is an incremental chain {𝑙𝑛}𝑛∈ℤ in ℕ and a sequence of 

the complex numbers {𝑎𝑘}𝑘∈ℤ such that lim
𝑛→∞

𝑎𝑙𝑛,𝑘
= 𝑎𝑘  for any  𝑘 ∈ ℤ. From Lemma Fatou’s we can ∑ |𝑎𝑘|2

𝑘∈ℤ < ∞ and if we put 

𝑢 = ∑ 𝑎𝑘𝑒𝑘𝑘 ∈ 𝑊2, we can have that  

                        ‖𝑢𝐼𝑛
− 𝑢‖

𝑊𝜌𝑗
2 = ∑ 𝛾𝑘|𝑎𝑛,𝑘 − 𝑎𝑘|

2
𝑘∈ℤ  

is converges to 0, gives proof of the inclusion 𝑊2 → 𝑊𝜌𝑗
2  is a compact.  

To characterize the Hilbert- Smidt and Trace Class Toeplitz operators we define a Berezin type transform for the Toeplitz operators 

on 𝑊2. 

Put   

                           𝑅𝑥 =
1

(1+|𝑥|2)1/2 (∑ (𝑛2 + 1)1/2
𝑛∈ℤ 𝐹𝑛(𝑥)𝑒𝑛(𝑥)).    

we can see there  positive constant such that  

                            𝑐 ≤ ‖𝑅𝑥‖𝑊2 ≤ 𝐶,                                                                                                                                                (29) 

for any  𝑥 ∈ ℝ2. Actually, from (6) we have  

∑(𝑛2 + 1)|𝐹𝑛(𝑥)|2

𝑛∈ℤ

= ∑(𝑛2 + 1)

𝑛∈ℤ

𝐽𝑛
2(𝑟) = ∑ 𝐽𝑛

2(𝑟)

𝑛∈ℤ

= ∑ 𝑛2𝐽𝑛
2(𝑟)

𝑛≠0

= 1 + ∑ 𝑛2𝐽𝑛
2(𝑟)

𝑛≠0

 

  By the summation formula in [15] 

               𝐽0(|𝑥 − 𝑦|) = ∑ 𝐽𝑛(𝑟)𝑛∈ℤ 𝐽𝑛(𝑠)𝑒𝑖𝑛(𝜃−𝜑), 

               𝑥 = 𝑟𝑒𝑖𝜃 , 𝑦 = 𝑠𝑒𝑖𝜑, we have got 𝑥 ≠ 𝑦 

                ∑ 𝑛2𝐽𝑛(𝑟)𝐽𝑛(𝑠)𝑒𝑖𝑛(𝜃−𝜑)
𝑛∈ℤ =

𝜕2

𝜕𝜃𝜕𝜑
𝐽0(|𝑥 − 𝑦|) =

𝐽1(|𝑥−𝑦|)

|𝑥−𝑦|
𝑥. 𝑦 +

𝐽2(|𝑥−𝑦|)

|𝑥−𝑦|2
(𝑥. 𝑦⊥)2. 

It can follows  ∑ 𝑛2𝐽𝑛
2(𝑟) =𝑛≠0 𝑟2𝐽1

, (0) = 𝑟2/2, and  

                 ∑ (𝑛2 + 1)𝑛∈ℤ 𝐽𝑛
2(𝑟)~(1 + 𝑟2),                                                                                                                                      (30) 

From (29) above. 

Definition17. In order to get the a symbol 𝜌𝑗 ∈ 𝐿1([0, ∞), 𝑤(𝑟)𝑑𝑟) we can define the transform of Berezin    

                  𝐵𝜌𝑗(𝑟) =
1

1+𝑟2 (∑ (𝑛2 + 1)𝛾𝑛𝑛∈ℤ 𝐽𝑛
2(𝑟))   

   We can notice that for any 𝑥 ∈ ℝ2 hence    

                  𝐵𝜌𝑗(𝑟) = (𝑇𝜌𝑗
𝑅𝑥, 𝑅𝑥). 

Rremark18.  

   a) Assuming that 𝜌𝑗 is the Carlson symbol, so the Berezin transform 𝐵𝜌𝑗 is limited.  

   b) Assuming that 𝑇𝜌𝑗
 is the compact operator, so lim

𝑟→∞
𝐵𝜌𝑗(𝑟) = 0. 

 Proof: In actuality Assuming that 𝑇𝜌𝑗
 is a bounded operator, then from (29) then can have (𝑇𝜌𝑗

𝑅𝑥, 𝑅𝑥) is bounded in ℝ2 that 

meens (a). Assuming that 𝑇𝜌𝑗
 is the compact, then can have (𝛾𝑛) is converges to 0. If given 휀 > 0, then from (30)  

1

1 + 𝑟2
( ∑ (𝑛2 + 1)𝛾𝑛

|𝑛|>𝑀

𝐽𝑛
2(𝑟)) ≤

휀

1 + 𝑟2
( ∑ (𝑛2 + 1)

|𝑛|>𝑀

𝐽𝑛
2(𝑟)) ≤ 𝐶휀 

if the 𝑀 large enough. Then  

lim
𝑟→∞

𝑠𝑢𝑝𝐵𝜌𝑗(𝑟) = lim
𝑟→∞

𝑠𝑢𝑝 (( ∑ + ∑ )

|𝑛|>𝑀|𝑛|≤𝑀

(𝑛2 + 1)𝛾𝑛𝐽𝑛
2(𝑟)) ≤ 𝐶휀 

          Thus lim
𝑟→∞

𝐵𝜌𝑗(𝑟) = 0.  

    Now we can study the Toeplitz operators where is belonging to the Schatten classes 𝑠1+ . Remember that the bounded operator 

𝑇 in a Hilbert space is belongs to the Schatten class 𝑠1+  if 𝑇𝑟|𝑇|𝑃 < ∞, where 𝑇𝑟𝐴 stands for the trace of the operator 𝐴 and |𝑇| =

√𝑇∗𝑇  in [17]. Since 𝑇1+  is a diagonal operator with respect to the basis {𝑒𝑛}𝑛∈ℤ, we can have 𝑇1+ ∈ 𝑠1+  if and only if {𝛾𝑛} ∈
ℓ𝑃(ℤ). In this case ‖𝑇1+ ‖𝑠1+𝜀

= ‖𝛾𝑛‖𝑙1+𝜀
.  

     Then from  the trace class 𝑠1 and the Hilbert–Schmidt operators 𝑠2 we can have the following theorems.  

Theorem19. InThe following statements are is equivalent:  

   a) 𝑇1+ ∈ 𝑠1  

   b) 𝜌𝑗 ∈ 𝐿1((1 + 𝑟2)𝑤(𝑟)𝑑𝑟)  

   c) 𝐵𝜌𝑗 ∈ 𝐿1((1 + 𝑟2)𝑤(𝑟)𝑑𝑟)  

and the quantities ‖𝑇1+ ‖𝑠1
, ‖𝜌𝑗‖

𝐿1((1+𝑟2)𝑤(𝑟)𝑑𝑟)
, ‖𝐵𝜌𝑗‖

𝐿1((1+𝑟2)𝑤(𝑟)𝑑𝑟)
  

are the comparable.  

Proof : From (30) we have been  

∑ 𝛾𝑛

𝑛∈ℤ

~ ∑(𝑛2 + 1)

𝑛∈ℤ

∫ 𝜌𝑗(𝑟)𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0

= ∫ 𝜌𝑗(𝑟)𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0

∑(𝑛2 + 1)𝐽𝑛
2(𝑟)𝑑𝑟~ ∫ 𝜌𝑗(𝑟)(1 + 𝑟2)𝑤(𝑟)𝑑𝑟

∞

0𝑛∈ℤ

 

the proof of equation (a) and (b). From another side.  
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∑ 𝛾𝑛

𝑛∈ℤ

~ ∑ 𝛾𝑛 ∫(𝑛2 + 1)𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0𝑛∈ℤ

= ∫ 𝐵𝜌𝑗(𝑟)𝐽𝑛
2(1 + 𝑟2)𝑤(𝑟)𝑑𝑟

∞

0

 

where the equivalence of (a) and (c) follows.  

Theorem20. Let 𝑇1+ ∈ 𝑠2 if and only if 𝜌𝑗𝐵𝜌𝑗 ∈ 𝐿1((1 + 𝑟2)𝑤(𝑟)𝑑𝑟), moreover ‖𝑇1+ ‖𝑠2
 and ‖𝜌𝑗𝐵𝜌𝑗‖

𝐿1((1+𝑟2)𝑤(𝑟)𝑑𝑟)

1/2
 are the 

comparable quantities. 

Proof: Then we have  

∑ 𝛾𝑛
2

𝑛∈ℤ

~ ∑ 𝛾𝑛(𝑛2 + 1) ∫ 𝜌𝑗(𝑟)𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0𝑛∈ℤ

= ∫ ∑ 𝛾𝑛(𝑛2 + 1)𝐽𝑛
2(𝑟)𝜌𝑗(𝑟)𝑤(𝑟)𝑑𝑟~ ∫ 𝜌𝑗(𝑟)𝐵𝜌𝑗(𝑟)(1 + 𝑟2)𝑤(𝑟)𝑑𝑟

∞

0𝑛∈ℤ

∞

0

 

   This is completes the proof.  

In general, we have the next part.  

Proposition21. Let 휀 ≥ 1. Then  

   a) If 𝜌𝑗 ∈ 𝐿1+ ((1 + 𝑟2)𝑤(𝑟)𝑑𝑟), then 𝑇1+ ∈ 𝑠2 then 

                        ‖𝑇1+ ‖𝑠1+𝜀
≤ 𝐶1+ ‖𝜌𝑗‖

𝐿1+𝜀((1+𝑟2)𝑤(𝑟)𝑑𝑟)
.                                                                                                               (31)  

   b) If  𝑇1+ ∈ 𝑠1+ , then  𝐵𝜌𝑗 ∈ 𝐿1+ ((1 + 𝑟2)𝑤(𝑟)𝑑𝑟) then  

                         ‖𝐵𝜌𝑗‖
𝐿1+𝜀((1+𝑟2)𝑤(𝑟)𝑑𝑟)

≤ 𝐶‖𝑇1+ ‖𝑠1+𝜀.                                                                                                                (32) 

Proof: When   

                         ∫ 𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0
~(𝑛2 + 1)−1 

we have by jensen's inequality and estimate in (30) that 

∑ 𝛾𝑛
1+

𝑛∈ℤ

≤ 𝐶 ∑ ((𝑛2 + 1) ∫ 𝜌𝑗(𝑟)𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0

)

1+

𝑛∈ℤ

≤ 𝐶 ∑ (
∫ 𝜌𝑗(𝑟)𝐽𝑛

2(𝑟)𝑤(𝑟)𝑑𝑟
∞

0

∫ 𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0

)

1+

≤ 𝐶 ∑
∫ 𝜌𝑗

1+ (𝑟)𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0

∫ 𝐽𝑛
2(𝑟)𝑤(𝑟)𝑑𝑟

∞

0𝑛∈ℤ𝑛∈ℤ

 

≤ 𝐶 ∫ ∑ (𝑛2 + 1)𝐽𝑛
2(𝑟)𝜌𝑗

1+ (𝑟)𝑤(𝑟)𝑑𝑟 ≤ 𝐶 ∫ 𝜌𝑗
1+ (𝑟)(1 + 𝑟2)𝑤(𝑟)𝑑𝑟

∞

0𝑛∈ℤ
∞

0
, 

Its prove (31). 

   By (30) we have by jensen's inequality again that 

       𝐵1+ 𝜌𝑗(𝑟) ≤
1

1+𝑟2 (∑ 𝛾𝑛
1+

𝑛∈ℤ (𝑛2 + 1)𝐽𝑛
2(𝑟)). 

Then to integrating this inequality with respect to (1 + 𝑟2)𝑤(𝑟)𝑑𝑟 we get (32).  

    We notice that the Berezin transform 𝐵𝜌𝑗 is an integral operator on [0, ∞) is proofed with the measure (1 + 𝑟2)𝑤(𝑟)𝑑𝑟 with 

given by   

               𝐵𝜌𝑗(𝑟) = ∫ 𝑀(𝑟, 𝑠)
∞

0
𝜌𝑗(𝑠)(1 + 𝑠2)𝑤(𝑠)𝑑𝑠 

where 𝑀(𝑟, 𝑠) its to be the symmetric kernel 

              𝑀(𝑟, 𝑠) =
2𝜋

(1+𝑟2)(1+𝑠2)
∑

(𝑛2+1)

𝛽𝑛
2

2

𝑛∈ℤ 𝐽𝑛
2(𝑟)𝐽𝑛

2(𝑠). 

Corollary22. The Berezin transform 𝐵𝜌𝑗 is to be a bounded integral operator on 𝐿1+ ((1 + 𝑟2)𝑤(𝑟)𝑑𝑟) for 1 ≤ 휀 ≤ ∞.  

Proof : Since 𝑀 is symmetric, that is enough to prove the statement for 휀 ∈ [0,1]. For 휀 = 0, this is part of Theorem 19. Now we 

prove it for 휀 = 1. In [18]. 

   When 𝜌𝑗 ∈ 𝐿2((1 + 𝑟2)𝑤(𝑟)𝑑𝑟), then 𝑇𝜌𝑗
∈ 𝑠2 by Proposition 21. If (𝛾𝑛) is the sequence corresponding to 𝑇𝜌𝑗

, then by 

Proposition21 and Theorem20, we can have  

        ‖𝐵𝜌𝑗‖
𝐿2((1+𝑟2)𝑤(𝑟)𝑑𝑟)

2
≤ ∑ 𝛾𝑛

2
𝑛∈ℤ ≤ 𝐶1+ ∫ 𝜌𝑗(𝑟)𝐵𝜌𝑗(𝑟)(1 + 𝑟2)𝑤(𝑟)𝑑𝑟 ≤ ‖𝜌𝑗‖

𝐿2((1+𝑟2)𝑤(𝑟)𝑑𝑟)
‖𝐵𝜌𝑗‖

𝐿2((1+𝑟2)𝑤(𝑟)𝑑𝑟)

∞

0
 . 

It can follows that  

                  ‖𝐵𝜌𝑗‖
𝐿2((1+𝑟2)𝑤(𝑟)𝑑𝑟)

≤ 𝐶1+ ‖𝜌𝑗‖
𝐿2((1+𝑟2)𝑤(𝑟)𝑑𝑟)

. 

In the end, we reach the result 휀 ∈ [0,1] by the inter interpolation.  
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